Analisis Kalsium Intraseluler dan Ultrastruktur Spermatozoa Ayam yang Dibekukan
Main Article Content
Abstract
Penelitian bertujuan untuk mengetahui intensitas kalsium (Ca2+) intraseluler dan ultrastruktur pada beberapa bagian spermatozoa ayam setelah pembekuan. Analisis intensitas Ca2+ intraseluler menggunakan confocal laser scanning microscopy (CLSM) pada akrosom, kepala, bagian tengah dan ekor spermatozoa ayam sebelum dan setelah pembekuan, serta analisis Ca2+ juga dilakukan pada setiap lapisan spermatozoa. Analisis ultrastruktur spermatozoa menggunakan field emission-scanning electrom microscopy (FE-SEM) setelah pembekuan. Hasil penelitian menunjukkan bahwa intensitas Ca2+ intraseluler lebih tinggi pada bagian akrosom dan bagian tengah, sedangkan pada bagian kepala dan ekor lebih rendah. Proses pembekuan-thawing menyebabkan peningkatan intensitas Ca2+ intraseluler di semua bagian spermatozoa. Intensitas Ca2+ intraseluler pada lapisan bagian tengah lebih tinggi dibandingkan pada bagian permukaan atas dan bawah spermatozoa. Pengamatan ultrastruktur menunjukkan adanya kerusakan pada bagian tengah, terlepasnya tudung akrosom, ekor melipat dan ujung ekor yang sedikit terbelah setelah pembekuan-thawing.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Abdelnour, S. A., Hassan, M. A., Mohammed, A. K., Alhimaidi, A. R., Al-Gabri, N., Al-Khaldi, K. O., & Swelum, A. A. (2020). The effect of adding different levels of curcumin and its nanoparticles to extender on post-thaw quality of cryopreserved rabbit sperm. Animals, 10(9), 1508.
Bailey, J. L., Bilodeau, J. F., & Cormier, N. (2000). Semen cryopreservation in domestic animals: A damaging and capacitating phenomenon. Journal of Andrology, 21, 1–7.
Blesbois, E. (2018). Bird Reproduction Overview. In: Skinner, M.K. (ed). Encyclopedia of Reproduction. Vol. 6. Cambridge: Academic Press.
Chen, X., Liu, J., Liu, Y., Li, X., An, D., Liu, X., & Zhang, L. (2024). Alpha-lipoic acid improves cryopreservation of rooster semen by reducing oxidative stress. Poultry Science, 103(5), 103632.
Cohen, R., Mukai, C., Nelson, J. L., Zenilman, S. S., Sosnicki, D. M., & Travis, A. J. (2022). A genetically targeted sensor reveals spatial and temporal dynamics of acrosomal calcium and sperm acrosome exocytosis. Journal of Biological Chemistry, 298(5).
Costello, S., Michelangeli, F., Nash, K., Lefievre, L., Morris, J., Machado-Oliveira, G., Barratt, C., Kirkman-Brown, J., & Publicover, S. (2009). Ca2+-stores in sperm: their identities and functions. Reproduction (Cambridge, England), 138(3), 425.
Duchen, M. R. (2000). Mitochondria and calcium from cell signaling to cell death. The Journal of Physiology, 529(Pt 1), 57-58.
Ebrahimi, B., & Keshtgar, S. (2020). The effects of EGTA on the quality of fresh and cryopreserved-thawed human spermatozoa. Iranian Journal of Medical Sciences, 45(3), 188-198.
Froman, D. P. (2016). Deduction of a calcium ion circuit affecting rooster sperm in vitro. Journal of Animal Science, 94(8), 3198-3205.
Gong, D., Chi, X., Ren, K., Huang, G., Zhou, G., Yan, N., Lei, J., & Zhou, Q. (2018). Structure of the human plasma membrane Ca2+-ATPase 1 in complex with its obligatory subunit neuroplastin. Nature Communications, 9(1), 3623.
Heng, N., Zhao, Z. X., Guo, Y., Gao, S., Cai, D. L., Fu, B. F., Sheng, X. H., Wang, X. G., Xing, K., Xiao, L. F., & Long, C. (2022). RhoA improves cryopreservation of rooster sperm through the Rho/RhoA-associated kinase/cofilin pathway. Poultry Science, 101(10), 102051.
Holmes, E., Björndahl, L., & Kvist, U. (2020). Hypotonic challenge reduces human sperm motility through coiling and folding of the tail. Andrologia, 52(11), e13859.
Jin, S. K., & Yang, W. X. (2017). Factors and pathways involved in capacitation: How are they regulated?. Oncotarget, 8, 3600–3627.
Keshtgar, S., Iravanpour, F., Gharesi-Fard, B., & Kazerooni, M. (2016). Combined effect of Trolox and EDTA on frozen-thawed sperm quality. Iranian Journal of Basic Medical Sciences, 41, 230–237.
Khaeruddin, A. N., Ardi, N., Fattah, A. H., & Armayanti, A. K. (2020a). Penentuan konsentrasi susu skim terbaik dalam pengencer semen ayam kampung berbahan dasar ringer laktat. Jurnal Veteriner, 21(2), 300-308.
Khaeruddin, K., Arifiantini, R. I., Sumantri, C., & Darwati, S. (2016). Kualitas spermatozoa ayam peranakan sentul dalam pengencer ringer laktat kuning telur dengan berbagai monosakarida. Jurnal Kedokteran Hewan, 10(2), 166-169.
Khaeruddin, K., Arismunandar, A., & Nurda, N. (2020b). Karakteristik semen ayam kampung yang diberi minyak hati ikan kod sebagai feed suplement. Musamus Journal of Livestock Science, 3(1), 15-24.
Khaeruddin, K., Ciptadi, G., Yusuf, M., Sawitri, W., Chotimah, C., & Wahjuningsih, S. (2024a). Effects of sorbitol and butylated hydroxytoluene on quality, lipid peroxidation, and intracellular calcium concentration of Gaga chicken frozen sperm. International Journal of Agriculture and Biology, 32, 62-70.
Khaeruddin, K., Junaedi, J., & Hastuti, H. (2020c). Cryopreservation of Indonesian native chicken semen by using dimethyl sulfoxide and various level of ethylene glycol as cryoprotectants. Biodiversitas Journal of Biological Diversity, 21(12), 5718-5722.
Khaeruddin, K., & Kurniawan, M. E. (2020). Keberhasilan pembekuan semen ayam yang diencerkan dan diperkaya dengan glukosa, trehalose, sukrosa dan laktosa. Jurnal Veteriner, 21(3), 476-484.
Khaeruddin, K., Wahjuningsih, S., Ciptadi, G., & Yusuf, M. (2024b). Kriopreservasi Semen Ayam. Malang: UB Press.
Khalil, W. A., El-Harairy, M. A., Zeidan, A. E., Hassan, M. A., & Mohey-Elsaeed, O. (2018). Evaluation of bull spermatozoa during and after cryopreservation: Structural and ultrastructural insights. International Journal of Veterinary Science and Medicine, 6, S49-S56.
Korobkin, J., Balabin, F. A., Yakovenko, S. A., Simonenko, E. Y., & Sveshnikova, A. N. (2021). Occurrence of calcium oscillations in human spermatozoa is based on spatial signaling enzymes distribution. International Journal of Molecular Sciences, 22(15), 8018.
Kotwicka, M., Skibinska, I., Jendraszak, M., & Jedrzejczak, P. (2016). 17β-estradiol modifies human spermatozoa mitochondrial function in vitro. Reproductive Biology and Endocrinology, 14, 1-9.
Madeddu, M., Mosca, F., Sayed, A.A., Zaniboni, L., Mangiagalli, M.G., Colombo, E., & Cerolini, S. (2016). Effect of cooling rate on the survival of cryopreserved rooster sperm: Comparison of different distances in the vapor above the surface of the liquid nitrogen. Animal Reproduction Science, 171, 58–64.
Matuz-Mares, D., González-Andrade, M., Araiza-Villanueva, M. G., Vilchis-Landeros, M. M., & Vázquez-Meza, H. (2022). Mitochondrial calcium: Effects of its imbalance in disease. Antioxidants, 11(5), 801.
Mohammad, M. S., Mardenli, O., & Amin Al-Tawash, A. S. (2021). Evaluation of the cryopreservation technology of poultry sperm: A review study. IOP Conference Series Earth and Environmental Science, 735, 12016.
Mosca, F., Madeddu, M., Sayed, A. A., Zaniboni, L., Iaffaldano, N., & Cerolini, S. (2016). Combined effect of permeant and non-permeant cryoprotectants on the quality of frozen/thawed chicken sperm. Cryobiology, 73(3), 343–347.
Najafi, A., Kia, H. D., Mehdipour, M., Hamishehkar, H., & Álvarez-Rodríguez, M. (2020). Effect of quercetin loaded liposomes or nanostructured lipid carrier (NLC) on post-thawed sperm quality and fertility of rooster sperm. Theriogenology, 152, 122-128.
Nguyen, T. M. D., Alves, S., Grasseau, I., Métayer-Coustard, S., Praud, C., & Froment, P., & Blesbois, E. (2014). Central role of 5′-AMP-activated Protein kinase in chicken sperm functions. Biology of Reproduction, 91(5), 121.
Nguyen, T. M. D., Combarnous, Y., Praud, C., Duittoz, A., & Blesbois, E. (2016a). Ca2+/calmodulin-dependent protein kinase kinases (CaMKKs) effects on AMP-activated protein kinase (AMPK) regulation of chicken sperm functions. PLoS One, 11(1), e0147559.
Nguyen, T. M. D., Duittoz, A., Praud, C., Combarnous, Y., & Blesbois, E. (2016b). Calcium channels in chicken sperm regulate motility and the acrosome reaction. The FEBS Journal, 283(10), 1902-1920.
Oldenhof, H., Friedel, K., Sieme, H., Glasmacher, B., & Wolkers, W. F. (2010). Membrane permeability parameters for freezing of stallion sperm as determined by fourier transform infrared spectroscopy. Cryobiology, 61(1), 115-122.
Oldenhof, H., Gojowsky, M., Wang, S., Henke, S., Yu, C., Rohn, K., Wolkers, W. F., & Sieme, H. (2013). Osmotic stress and membrane phase changes during freezing of stallion sperm: mode of action of cryoprotective agents. Biology of Reproduction, 88(3), 68.
Olexikova, L., Miranda, M., Kulikova, B., Baláži, A., & Chrenek, P. (2019). Cryodamage of plasma membrane and acrosome region in chicken sperm. Anatomia, Histologia, Embryologia, 48(1), 33-39.
O’Neill, H. C., Nikoloska, M., Ho, H., Doshi, A., & Maalouf, W. (2019). Improved cryopreservation of spermatozoa using vitrification: Comparison of cryoprotectants and a novel device for long-term storage. Journal of Assisted Reproduction and Genetics, 36, 1713-1720.
Peña, F. J., O’Flaherty, C., Ortiz Rodríguez, J. M., Martín Cano, F. E., Gaitskell-Phillips, G. L. Gil, M. C., & Ortega Ferrusola, C. (2019). Redox regulation and oxidative stress: The particular case of the stallion spermatozoa. Antioxidants, 8(11), 567.
Peng, T.I., & Jou, M.J. (2010). Oxidative stress caused by mitochondrial calcium overload. Annals of the New York Academy of Sciences, 1201(1), 183-188.
Pesch, S., & Bergmann, M. (2006). Structure of mammalian spermatozoa in respect to viability, fertility and cryopreservation. Micron, 37, 597–612.
Robertson, L., & Watson, P.F. (1987). The effect of egg yolk on the control of intracellular calcium in ram spermatozoa cooled and stored at 5°C. Animal Reproduction Science, 15, 177-87.
Romero-Garcia, S., & Prado-Garcia, H. (2019). Mitochondrial calcium: Transport and modulation of cellular processes in homeostasis and cancer (Review). International Journal of Oncology, 54, 1155–1167.
Salih, S.A., Daghigh-Kia, H., Mehdipour, M., & Najafi, A. (2021). Does ergothioneine and thawing temperatures improve rooster semen post-thawed quality?. Poultry Science, 100(10), 101405.
Santulli, G., Xie, W., Reiken, S. R., & Marks, A. R. (2015). Mitochondrial calcium overload is a key determinant in heart failure. Proceedings of the National Academy of Sciences, 112(36), 11389-11394.
Schuh, K, Cartwright, E. J., Jankevics, E., Bundschu, K., Liebermann, J., Williams, J. C., Armesilla, A. L., Emerson, M., Oceandy, D., Knobeloch, K. P., & Neyses, L. (2004). Plasma membrane Ca2+ ATPase 4 is required for sperm motility and male fertility. Journal of Biological Chemistry, 279(27), 28220-28226.
Shi, L., Ren, Y., Zhou, H., Hou, G., Xun, W., Yue, W., Zhang, C. & Yang, R. (2014). Effect of rapid freezing–thawing techniques on the sperm parameters and ultrastructure of Chinese Taihang black goat spermatozoa. Micron, 57, 6-12.
Sieme, H, Oldenhof, H., & Wolkers, W. F. (2015). Sperm membrane behaviour during cooling and cryopreservation. Reproduction in Domestic Animals, 50, 20-26.
Sushadi, P. S., Kuwabara, M., Maung, E. E. W., Mohamad Mohtar, M. S., Sakamoto, K., Selvaraj, V., & Asano, A. (2023). Arresting calcium-regulated sperm metabolic dynamics enables prolonged fertility in poultry liquid semen storage. Scientific Reports, 13(1), 21775.
Treulen, F., Arias, M.E., Aguila, L., Uribe, P., & Felmer, R. (2018). Cryopreservation induces mitochondrial permeability transition in a bovine sperm model. Cryobiology, 83, 65-74.
Wahjuningsih, S., Arif, A. A., Khaerudin, P. H., & Putri, A. R. I. (2024). The effects of equilibration time and post-thawing temperatures in cryopreservation of gaga chicken semen. Advanced in Animal and Veterinary Sciences, 12(5), 807-814.
Woelders, H., De Wit, A. A. C., Engel, B., Hulsegge, B., Grasseau, I., Blesbois, E., Bernal, B., & Santiago-Moreno, J. (2022). Freezing chicken semen: Influence of base medium osmolality, cryoprotectants, cryoprotectant concentration, and cooling rate on post-thaw sperm survival. Cryobiology, 108, 67-77.
Yeste, M., Estrada, E., Rocha, L. G., Marín, H., Rodríguez‐Gil, J. E., & Miró, J. (2015). Cryotolerance of stallion spermatozoa is related to ROS production and mitochondrial membrane potential rather than to the integrity of sperm nucleus. Andrology, 3(2), 395-407.
Zampini, R., Castro-González, X. A., Sari, L. M., Martin, A., Diaz, A. V., Argañaraz, M. E., & Apichela, S. A. (2020). Effect of cooling and freezing on llama (Lama glama) sperm ultrastructure. Frontiers in Veterinary Science, 7, 587596.
Zhang, P., Chen, Y. P., Qiu, J. H., Dai, Y. Z., & Feng, B. (2019). Imaging the microprocesses in biofilm matrices. Trends in Biotechnology, 37(2), 214-226.
Zong, Y., Li, Y., Sun, Y., Mehaisen, G. M., Ma, T., & Chen, J. (2023). Chicken sperm cryopreservation: Review of techniques, freezing damage, and freezability mechanisms. Agriculture, 13(2), 445.